Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(3): e0280423, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38364179

RESUMO

Acinetobacter baumannii is a Gram-negative bacterial pathogen that poses a major health concern due to increasing multidrug resistance. The Gram-negative cell envelope is a key barrier to antimicrobial entry and includes an inner and outer membrane. The maintenance of lipid asymmetry (Mla) system is the main homeostatic mechanism by which Gram-negative bacteria maintain outer membrane asymmetry. Loss of the Mla system in A. baumannii results in attenuated virulence and increased susceptibility to membrane stressors and some antibiotics. We recently reported two strain variants of the A. baumannii type strain ATCC 17978: 17978VU and 17978UN. Here, ∆mlaF mutants in the two ATCC 17978 strains display different phenotypes for membrane stress resistance, antibiotic resistance, and pathogenicity in a murine pneumonia model. Although allele differences in obgE were previously reported to synergize with ∆mlaF to affect growth and stringent response, obgE alleles do not affect membrane stress resistance. Instead, a single-nucleotide polymorphism (SNP) in the essential gene encoding undecaprenyl pyrophosphate (Und-PP) synthase, uppS, results in decreased enzymatic rate and decrease in total Und-P levels in 17978UN compared to 17978VU. The UppSUN variant synergizes with ∆mlaF to reduce capsule and lipooligosaccharide (LOS) levels, increase susceptibility to membrane stress and antibiotics, and reduce persistence in a mouse lung infection. Und-P is a lipid glycan carrier required for the biosynthesis of A. baumannii capsule, cell wall, and glycoproteins. These findings uncover synergy between Und-P and the Mla system in maintaining the A. baumannii cell envelope and antibiotic resistance.IMPORTANCEAcinetobacter baumannii is a critical threat to global public health due to its multidrug resistance and persistence in hospital settings. Therefore, novel therapeutic approaches are urgently needed. We report that a defective undecaprenyl pyrophosphate synthase (UppS) paired with a perturbed Mla system leads to synthetically sick cells that are more susceptible to clinically relevant antibiotics and show reduced virulence in a lung infection model. These results suggest that targeting UppS or undecaprenyl species and the Mla system may resensitize A. baumannii to antibiotics in combination therapies. This work uncovers a previously unknown synergistic relationship in cellular envelope homeostasis that could be leveraged for use in combination therapy against A. baumannii.


Assuntos
Acinetobacter baumannii , Antibacterianos , Fosfatos de Poli-Isoprenil , Animais , Camundongos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Parede Celular , Farmacorresistência Bacteriana Múltipla
2.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790371

RESUMO

Acinetobacter baumannii is a Gram-negative healthcare-associated pathogen that poses a major health concern due to increasing multidrug resistance. The Gram-negative cell envelope is a key barrier to antimicrobial entry and includes an inner and outer membrane. The outer membrane has an asymmetric composition that is important for structural integrity and barrier to the environment. Therefore, Gram-negative bacteria have mechanisms to uphold this asymmetry such as the maintenance of lipid asymmetry system (Mla), which removes glycerophospholipids from the outer leaflet of the outer membrane and transports them to the inner membrane. Loss of this system in A. baumannii results in attenuated virulence and increased susceptibility to membrane stressors and some antibiotics. We recently reported two strain variants of the A. baumannii type strain ATCC 17978, 17978VU and 17978UN. We show here that ΔmlaF mutants in the two strains display different phenotypes for membrane stress resistance, antibiotic resistance, and pathogenicity in a murine pneumonia model. We used comparative genetics to identify interactions between ATCC 17978 strain alleles and mlaF to uncover the cause behind the phenotypic differences. Although allele differences in obgE were previously reported to synergize with ΔmlaF to affect growth and stringent response, we show that obgE alleles do not affect membrane stress resistance. Instead, a single nucleotide polymorphism (SNP) in the essential gene encoding undecaprenyl pyrophosphate (Und-PP) synthase, uppS, synergizes with ΔmlaF to increase susceptibility to membrane stress and antibiotics, and reduce persistence in a mouse lung infection. Und-P is a lipid glycan carrier known to be required for biosynthesis of A. baumannii capsule, cell wall, and glycoproteins. Our data suggest that in the absence of the Mla system, the cellular level of Und-P is critical for envelope integrity, antibiotic resistance, and lipooligosaccharide abundance. These findings uncover synergy between Und-P and the Mla system in maintaining the A. baumannii outer membrane and stress resistance.

3.
Infect Immun ; 91(6): e0043322, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37191522

RESUMO

Acinetobacter infections have high rates of mortality due to an increasing incidence of infections by multidrug-resistant (MDR) and extensively-drug-resistant (XDR) strains. Therefore, new therapeutic strategies for the treatment of Acinetobacter infections are urgently needed. Acinetobacter spp. are Gram-negative coccobacilli that are obligate aerobes and can utilize a wide variety of carbon sources. Acinetobacter baumannii is the main cause of Acinetobacter infections, and recent work has identified multiple strategies A. baumannii uses to acquire nutrients and replicate in the face of host nutrient restriction. Some host nutrient sources also serve antimicrobial and immunomodulatory functions. Hence, understanding Acinetobacter metabolism during infection may provide new insights into novel infection control measures. In this review, we focus on the role of metabolism during infection and in resistance to antibiotics and other antimicrobial agents and discuss the possibility that metabolism may be exploited to identify novel targets to treat Acinetobacter infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecção Hospitalar , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Acinetobacter/tratamento farmacológico , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla
4.
Ann N Y Acad Sci ; 1518(1): 166-182, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36316792

RESUMO

Pathogenic Acinetobacter species, most notably Acinetobacter baumannii, are a significant cause of healthcare-associated infections worldwide. Acinetobacter infections are of particular concern to global health due to the high rates of multidrug resistance and extensive drug resistance. Widespread genome sequencing and analysis has determined that bacterial antibiotic resistance is often acquired and disseminated through the movement of mobile genetic elements, including insertion sequences (IS), transposons, integrons, and conjugative plasmids. In Acinetobacter specifically, resistance to carbapenems and cephalosporins is highly correlated with IS, as many ISAba elements encode strong outwardly facing promoters that are required for sufficient expression of ß-lactamases to confer clinical resistance. Here, we review the role of mobile genetic elements in antibiotic resistance in Acinetobacter species through the framework of the mechanism of resistance acquisition and with a focus on experimentally validated mechanisms.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/genética , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Integrons/genética , Farmacorresistência Bacteriana/genética , Elementos de DNA Transponíveis/genética , Testes de Sensibilidade Microbiana
5.
FEMS Microbes ; 3: xtac016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909464

RESUMO

In vitro exposure of multiple Gram-negative bacteria to an aminoglycoside (AG) antibiotic has previously been demonstrated to result in bacterial alterations that interact with host factors to suppress Gram-negative pneumonia. However, the mechanisms resulting in suppression are not known. Here, the hypothesis that Gram-negative bacteria bind and retain AGs, which are introduced into the lung and interact with host defenses to affect bacterial killing, was tested. Following in vitro exposure of one of several, pathogenic Gram-negative bacteria to the AG antibiotics kanamycin or gentamicin, AGs were detected in bacterial cell pellets (up to 208 µg/mL). Using inhibitors of AG binding and internalization, the bacterial outer membrane was implicated as the predominant kanamycin and gentamicin reservoir. Following intranasal administration of gentamicin-bound bacteria or gentamicin solution at the time of infection with live, AG-naïve bacteria, gentamicin was detected in the lungs of infected mice (up to 8 µg/g). Co-inoculation with gentamicin-bound bacteria resulted in killing of AG-naïve bacteria by up to 3-log10, mirroring the effects of intranasal gentamicin treatment. In vitro killing of AG-naïve bacteria mediated by kanamycin-bound bacteria required the presence of detergents or pulmonary surfactant, suggesting that increased bacterial killing inside the murine lung is facilitated by the detergent component of pulmonary surfactant. These findings demonstrate that Gram-negative bacteria bind and retain AGs that can interact with host-derived pulmonary surfactant to enhance bacterial killing in the lung. This may help explain why AGs appear to have unique efficacy in the lung and might expand their clinical utility.

6.
Infect Immun ; 89(12): e0045421, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34460288

RESUMO

Acinetobacter baumannii is a nosocomial pathogen that exhibits substantial genomic plasticity. Here, the identification of two variants of A. baumannii ATCC 17978 that differ based on the presence of a 44-kb accessory locus, named AbaAL44 (A. baumannii accessory locus 44 kb), is described. Analyses of existing deposited data suggest that both variants are found in published studies of A. baumannii ATCC 17978 and that American Type Culture Collection (ATCC)-derived laboratory stocks comprise a mix of these two variants. Yet, each variant exhibits distinct interactions with the host in vitro and in vivo. Infection with the variant that harbors AbaAL44 (A. baumannii 17978 UN) results in decreased bacterial burdens and increased neutrophilic lung inflammation in a mouse model of pneumonia, and affects the production of interleukin 1 beta (IL-1ß) and IL-10 by infected macrophages. AbaAL44 harbors putative pathogenesis genes, including those predicted to encode a type I pilus cluster, a catalase, and a cardiolipin synthase. The accessory catalase increases A. baumannii resistance to oxidative stress and neutrophil-mediated killing in vitro. The accessory cardiolipin synthase plays a dichotomous role by promoting bacterial uptake and increasing IL-1ß production by macrophages, but also by enhancing bacterial resistance to cell envelope stress. Collectively, these findings highlight the phenotypic consequences of the genomic dynamism of A. baumannii through the evolution of two variants of a common type strain with distinct infection-related attributes.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/classificação , Acinetobacter baumannii/genética , Variação Genética , Genótipo , Fenótipo , Animais , Proteínas de Bactérias/genética , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Camundongos
7.
Cell Rep ; 32(10): 108129, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32905776

RESUMO

Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia and a critical threat due to multidrug resistance. The A. baumannii outer membrane is an asymmetric lipid bilayer composed of inner leaflet glycerophospholipids and outer leaflet lipooligosaccharides. Deleting mlaF of the maintenance of lipid asymmetry (Mla) system causes A. baumannii to become more susceptible to pulmonary surfactants and antibiotics and decreases bacterial survival in the lungs of mice. Spontaneous suppressor mutants isolated from infected mice contain an ISAba11 insertion upstream of the ispB initiation codon, an essential isoprenoid biosynthesis gene. The insertion restores antimicrobial resistance and virulence to ΔmlaF. The suppressor strain increases lipooligosaccharides, suggesting that the mechanism involves balancing the glycerophospholipids/lipooligosaccharides ratio on the bacterial surface. An identical insertion exists in an extensively drug-resistant A. baumannii isolate, demonstrating its clinical relevance. These data show that the stresses bacteria encounter during infection select for genomic rearrangements that increase resistance to antimicrobials.


Assuntos
Acinetobacter baumannii/patogenicidade , Antibacterianos/metabolismo , Lipopolissacarídeos/metabolismo , Terpenos/metabolismo , Humanos
8.
Biochemistry ; 59(31): 2882-2895, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32697076

RESUMO

Staphylococcus aureus is a commensal pathogen that has evolved to protect itself from unfavorable conditions by forming complex community structures termed biofilms. The regulation of the formation of these structures is multifactorial and in S. aureus involves a number of transcriptional regulators. GbaA (glucose-induced biofilm accessory protein A) is a tetracycline repressor (TetR) family regulator that harbors two conserved Cys residues (C55 and C104) and impacts the regulation of formation of poly-N-acetylglucosamine-based biofilms in many methicillin-resistant S. aureus (MRSA) strains. Here, we show that GbaA-regulated transcription of a divergently transcribed operon in a MRSA strain can be induced by potent electrophiles, N-ethylmaleimide and methylglyoxal. Strikingly, induction of transcription in cells requires C55 or C104, but not both. These findings are consistent with in vitro small-angle X-ray scattering, chemical modification, and DNA operator binding experiments, which reveal that both reduced and intraprotomer (C55-C104) disulfide forms of GbaA have very similar overall structures and each exhibits a high affinity for the DNA operator, while DNA binding is strongly inhibited by derivatization of one or the other Cys residues via formation of a mixed disulfide with bacillithiol disulfide or a monothiol derivatization adduct with NEM. While both Cys residues are reactive toward electrophiles, C104 in the regulatory domain is the more reactive thiolate. These characteristics enhance the inducer specificity of GbaA and would preclude sensing of generalized cellular oxidative stress via disulfide bond formation. The implications of the findings for GbaA function in MRSA strains are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Staphylococcus aureus/metabolismo , Compostos de Sulfidrila/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Biofilmes , Polarização de Fluorescência , Modelos Moleculares , Óperon/genética , Conformação Proteica , Staphylococcus aureus/genética , Staphylococcus aureus/fisiologia
9.
mBio ; 11(3)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576676

RESUMO

Acinetobacter baumannii is an opportunistic nosocomial pathogen that is the causative agent of several serious infections in humans, including pneumonia, sepsis, and wound and burn infections. A. baumannii is also capable of forming proteinaceous biofilms on both abiotic and epithelial cell surfaces. Here, we investigate the response of A. baumannii toward sodium sulfide (Na2S), known to be associated with some biofilms at oxic/anoxic interfaces. The addition of exogenous inorganic sulfide reveals that A. baumannii encodes two persulfide-sensing transcriptional regulators, a primary σ54-dependent transcriptional activator (FisR), and a secondary system controlled by the persulfide-sensing biofilm growth-associated repressor (BigR), which is only induced by sulfide in a fisR deletion strain. FisR activates an operon encoding a sulfide oxidation/detoxification system similar to that characterized previously in Staphylococcus aureus, while BigR regulates a secondary persulfide dioxygenase (PDO2) as part of yeeE-yedE-pdo2 sulfur detoxification operon, found previously in Serratia spp. Global S-sulfuration (persulfidation) mapping of the soluble proteome reveals 513 persulfidation targets well beyond FisR-regulated genes and includes five transcriptional regulators, most notably the master biofilm regulator BfmR and a poorly characterized catabolite regulatory protein (Crp). Both BfmR and Crp are well known to impact biofilm formation in A. baumannii and other organisms, respectively, suggesting that persulfidation of these regulators may control their activities. The implications of these findings on bacterial sulfide homeostasis, persulfide signaling, and biofilm formation are discussed.IMPORTANCE Although hydrogen sulfide (H2S) has long been known as a respiratory poison, recent reports in numerous bacterial pathogens reveal that H2S and more downstream oxidized forms of sulfur collectedly termed reactive sulfur species (RSS) function as antioxidants to combat host efforts to clear the infection. Here, we present a comprehensive analysis of the transcriptional and proteomic response of A. baumannii to exogenous sulfide as a model for how this important human pathogen manages sulfide/RSS homeostasis. We show that A. baumannii is unique in that it encodes two independent persulfide sensing and detoxification pathways that govern the speciation of bioactive sulfur in cells. The secondary persulfide sensor, BigR, impacts the expression of biofilm-associated genes; in addition, we identify two other transcriptional regulators known or projected to regulate biofilm formation, BfmR and Crp, as highly persulfidated in sulfide-exposed cells. These findings significantly strengthen the connection between sulfide homeostasis and biofilm formation in an important human pathogen.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Biofilmes/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Genes Reguladores , Proteômica , Sulfetos/metabolismo , Sulfetos/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Infect Immun ; 88(7)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32341119

RESUMO

Acinetobacter baumannii is a nosocomial pathogen capable of causing a range of diseases, including respiratory and urinary tract infections and bacteremia. Treatment options are limited due to the increasing rates of antibiotic resistance, underscoring the importance of identifying new targets for antimicrobial development. During infection, A. baumannii must acquire nutrients for replication and survival. These nutrients include carbon- and nitrogen-rich molecules that are needed for bacterial growth. One possible nutrient source within the host is amino acids, which can be utilized for protein synthesis or energy generation. Of these, the amino acid histidine is among the most energetically expensive for bacteria to synthesize; therefore, scavenging histidine from the environment is likely advantageous. We previously identified the A. baumannii histidine utilization (Hut) system as being linked to nutrient zinc homeostasis, but whether the Hut system is important for histidine-dependent energy generation or vertebrate colonization is unknown. Here, we demonstrate that the Hut system is conserved among pathogenic Acinetobacter and regulated by the transcriptional repressor HutC. In addition, the Hut system is required for energy generation using histidine as a carbon and nitrogen source. Histidine was also detected extracellularly in the murine lung, demonstrating that it is bioavailable during infection. Finally, the ammonia-releasing enzyme HutH is required for acquiring nitrogen from histidine in vitro, and strains inactivated for hutH are severely attenuated in a murine model of pneumonia. These results suggest that bioavailable histidine in the lung promotes Acinetobacter pathogenesis and that histidine serves as a crucial nitrogen source during infection.


Assuntos
Infecções por Acinetobacter/metabolismo , Infecções por Acinetobacter/microbiologia , Acinetobacter/fisiologia , Histidina/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Suscetibilidade a Doenças , Ordem dos Genes , Replicon , Vertebrados
11.
PLoS Pathog ; 16(3): e1008374, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32168364

RESUMO

Antimicrobial resistance is increasing in pathogenic bacteria. Yet, the effect of antibiotic exposure on resistant bacteria has been underexplored and may affect pathogenesis. Here we describe the discovery that propagation of the human pathogen Acinetobacter baumannii in an aminoglycoside antibiotic results in alterations to the bacterium that interact with lung innate immunity resulting in enhanced bacterial clearance. Co-inoculation of mice with A. baumannii grown in the presence and absence of the aminoglycoside, kanamycin, induces enhanced clearance of a non-kanamycin-propagated strain. This finding can be replicated when kanamycin-propagated A. baumannii is killed prior to co-inoculation of mice, indicating the enhanced bacterial clearance results from interactions with innate host defenses in the lung. Infection with kanamycin-propagated A. baumannii alters the kinetics of phagocyte recruitment to the lung and reduces pro- and anti-inflammatory cytokine and chemokine production in the lung and blood. This culminates in reduced histopathologic evidence of lung injury during infection despite enhanced bacterial clearance. Further, the antibacterial response induced by killed aminoglycoside-propagated A. baumannii enhances the clearance of multiple clinically relevant Gram-negative pathogens from the lungs of infected mice. Together, these findings exemplify cooperation between antibiotics and the host immune system that affords protection against multiple antibiotic-resistant bacterial pathogens. Further, these findings highlight the potential for the development of a broad-spectrum therapeutic that exploits a similar mechanism to that described here and acts as an innate immunity modulator.


Assuntos
Infecções por Acinetobacter/imunologia , Acinetobacter baumannii/imunologia , Imunidade Inata/efeitos dos fármacos , Canamicina/farmacologia , Pulmão/imunologia , Pneumonia Bacteriana/imunologia , Infecções por Acinetobacter/patologia , Acinetobacter baumannii/patogenicidade , Animais , Quimiocinas/imunologia , Feminino , Pulmão/patologia , Camundongos , Camundongos Knockout , Fagócitos/patologia , Pneumonia Bacteriana/microbiologia
12.
Nat Commun ; 10(1): 2763, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235751

RESUMO

Multidrug resistant (MDR) Acinetobacter baumannii poses a growing threat to global health. Research on Acinetobacter pathogenesis has primarily focused on pneumonia and bloodstream infections, even though one in five A. baumannii strains are isolated from urinary sites. In this study, we highlight the role of A. baumannii as a uropathogen. We develop the first A. baumannii catheter-associated urinary tract infection (CAUTI) murine model using UPAB1, a recent MDR urinary isolate. UPAB1 carries the plasmid pAB5, a member of the family of large conjugative plasmids that represses the type VI secretion system (T6SS) in multiple Acinetobacter strains. pAB5 confers niche specificity, as its carriage improves UPAB1 survival in a CAUTI model and decreases virulence in a pneumonia model. Comparative proteomic and transcriptomic analyses show that pAB5 regulates the expression of multiple chromosomally-encoded virulence factors besides T6SS. Our results demonstrate that plasmids can impact bacterial infections by controlling the expression of chromosomal genes.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/patogenicidade , Infecções Relacionadas a Cateter/microbiologia , Plasmídeos/genética , Pneumonia Bacteriana/microbiologia , Infecções Urinárias/microbiologia , Infecções por Acinetobacter/epidemiologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções Relacionadas a Cateter/epidemiologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Pneumonia Bacteriana/epidemiologia , Proteômica , Estudos Retrospectivos , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Cateteres Urinários/efeitos adversos , Cateteres Urinários/microbiologia , Sistema Urinário/microbiologia , Infecções Urinárias/epidemiologia , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
13.
Am J Respir Cell Mol Biol ; 61(4): 459-468, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30943376

RESUMO

Calprotectin is a heterodimer of the proteins S100A8 and S100A9, and it is an abundant innate immune protein associated with inflammation. In humans, calprotectin transcription and protein abundance are associated with asthma and disease severity. However, mechanistic studies in experimental asthma models have been inconclusive, identifying both protective and pathogenic effects of calprotectin. To clarify the role of calprotectin in asthma, calprotectin-deficient S100A9-/- and wild-type (WT) C57BL/6 mice were compared in a murine model of allergic airway inflammation. Mice were intranasally challenged with extracts of the clinically relevant allergen, Alternaria alternata (Alt Ext), or PBS every third day over 9 days. On Day 10, BAL fluid and lung tissue homogenates were harvested and allergic airway inflammation was assessed. Alt Ext challenge induced release of S100A8/S100A9 to the alveolar space and increased protein expression in the alveolar epithelium of WT mice. Compared with WT mice, S100A9-/- mice displayed significantly enhanced allergic airway inflammation, including production of IL-13, CCL11, CCL24, serum IgE, eosinophil recruitment, and airway resistance and elastance. In response to Alt Ext, S100A9-/- mice accumulated significantly more IL-13+IL-5+CD4+ T-helper type 2 cells. S100A9-/- mice also accumulated a significantly lower proportion of CD4+ T regulatory (Treg) cells in the lung that had significantly lower expression of CD25. Calprotectin enhanced WT Treg cell suppressive activity in vitro. Therefore, this study identifies a role for the innate immune protein, S100A9, in protection from CD4+ T-helper type 2 cell hyperinflammation in response to Alt Ext. This protection is mediated, at least in part, by CD4+ Treg cell function.


Assuntos
Alveolite Alérgica Extrínseca/imunologia , Calgranulina B/fisiologia , Complexo Antígeno L1 Leucocitário/fisiologia , Pulmão/imunologia , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Imunidade Adaptativa , Alérgenos/toxicidade , Alternaria/imunologia , Alveolite Alérgica Extrínseca/etiologia , Alveolite Alérgica Extrínseca/patologia , Animais , Hiper-Reatividade Brônquica/etiologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/patologia , Líquido da Lavagem Broncoalveolar/química , Calgranulina A/biossíntese , Calgranulina A/genética , Calgranulina B/genética , Citocinas/metabolismo , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/genética , Imunoglobulina E/imunologia , Inflamação , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Eosinofilia Pulmonar/etiologia , Eosinofilia Pulmonar/imunologia , Eosinofilia Pulmonar/patologia , Organismos Livres de Patógenos Específicos
14.
Metallomics ; 11(5): 982-993, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30968088

RESUMO

Zinc (Zn) is an essential trace metal required for all forms of life, but is toxic at high concentrations. While the toxic effects of high levels of Zn are well documented, the mechanism of cell death appears to vary based on the study and concentration of Zn. Zn has been proposed as an anti-cancer treatment against non-small cell lung cancer (NSCLC). The goal of this analysis was to determine the effects of Zn on metabolism and cell death in A549 cells. Here, high throughput multi-omics analysis identified the molecular effects of Zn intoxication on the proteome, metabolome, and transcriptome of A549 human NSCLC cells after 5 min to 24 h of Zn exposure. Multi-omics analysis combined with additional experimental evidence suggests Zn intoxication induces ferroptosis, an iron and lipid peroxidation-dependent programmed cell death, demonstrating the utility of multi-omics analysis to identify cellular response to intoxicants.


Assuntos
Ferroptose/efeitos dos fármacos , Pulmão/patologia , Zinco/toxicidade , Células A549 , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Genômica , Humanos , NAD/biossíntese , Necrose , Ligação Proteica/efeitos dos fármacos , Fatores de Tempo
15.
mBio ; 10(1)2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808700

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) is a major cause of foodborne gastrointestinal illness. EHEC uses a specialized type III secretion system (T3SS) to form attaching and effacing lesions in the colonic epithelium and outcompete commensal gut microbiota to cause disease. A recent report in mBio (E. A. Cameron, M. M. Curtis, A. Kumar, G. M. Dunny, et al., mBio 9:e02204-18, 2018, https://doi.org/10.1128/mBio.02204-18) describes a new role for gut commensals in potentiating disease caused by EHEC. Proteases produced by EHEC and the prevalent human commensal Bacteroides thetaiotaomicron cleave proteins in the EHEC T3SS translocon that modulate T3SS function. B. thetaiotaomicron protease activity promotes translocation of bacterial effectors required for lesion formation. These results describe a new role for the microbiota in gastrointestinal disease that could uncover future treatments to prevent the spread of gastroenteritis.


Assuntos
Escherichia coli Êntero-Hemorrágica , Peptídeo Hidrolases , Proteínas de Escherichia coli , Humanos , Microbiota , Virulência
16.
Methods Mol Biol ; 1946: 289-305, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30798564

RESUMO

Acinetobacter baumannii is a Gram-negative opportunistic pathogen and a leading cause of ventilator-associated pneumonia. Murine models of A. baumannii lung infection allow researchers to experimentally assess A. baumannii virulence and host response. Intranasal administration of A. baumannii models acute lung infection. This chapter describes the methods to test A. baumannii virulence in a murine model of lung infection, including assessing the competitive index of a bacterial mutant and the associated inflammatory responses.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/fisiologia , Pneumonia Bacteriana/microbiologia , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/patologia , Acinetobacter baumannii/patogenicidade , Doença Aguda , Animais , Carga Bacteriana , Biópsia , Modelos Animais de Doenças , Citometria de Fluxo , Imunidade , Imuno-Histoquímica , Camundongos , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/patologia , Virulência
17.
J Proteome Res ; 17(10): 3396-3408, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30114907

RESUMO

Proteomics, metabolomics, and transcriptomics generate comprehensive data sets, and current biocomputational capabilities allow their efficient integration for systems biology analysis. Published multiomics studies cover methodological advances as well as applications to biological questions. However, few studies have focused on the development of a high-throughput, unified sample preparation approach to complement high-throughput omic analytics. This report details the automation, benchmarking, and application of a strategy for transcriptomic, proteomic, and metabolomic analyses from a common sample. The approach, sample preparation for multi-omics technologies (SPOT), provides equivalent performance to typical individual omic preparation methods but greatly enhances throughput and minimizes the resources required for multiomic experiments. SPOT was applied to a multiomics time course experiment for zinc-treated HL-60 cells. The data reveal Zn effects on NRF2 antioxidant and NFkappaB signaling. High-throughput approaches such as these are critical for the acquisition of temporally resolved, multicondition, large multiomic data sets such as those necessary to assess complex clinical and biological concerns. Ultimately, this type of approach will provide an expanded understanding of challenging scientific questions across many fields.


Assuntos
Perfilação da Expressão Gênica/métodos , Metabolômica/métodos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteômica/métodos , Genômica/métodos , Células HL-60 , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Biologia de Sistemas/métodos , Zinco/farmacologia
18.
J Biol Chem ; 292(48): 19628-19638, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28982978

RESUMO

Acinetobacter baumannii, Acinetobacter nosocomialis, and Acinetobacter pittii are a frequent cause of multidrug-resistant, healthcare-associated infections. Our previous work demonstrated that A. nosocomialis M2 possesses a functional type II secretion system (T2SS) that is required for full virulence. Further, we identified the metallo-endopeptidase CpaA, which has been shown previously to cleave human Factor V and deregulate blood coagulation, as the most abundant type II secreted effector protein. We also demonstrated that its secretion is dependent on CpaB, a membrane-bound chaperone. In this study, we show that CpaA expression and secretion are conserved across several medically relevant Acinetobacter species. Additionally, we demonstrate that deletion of cpaA results in attenuation of A. nosocomialis M2 virulence in moth and mouse models. The virulence defects resulting from the deletion of cpaA were comparable with those observed upon abrogation of T2SS activity. The virulence defects resulting from the deletion of cpaA are comparable with those observed upon abrogation of T2SS activity. We also show that CpaA and CpaB strongly interact, forming a complex in a 1:1 ratio. Interestingly, deletion of the N-terminal transmembrane domain of CpaB results in robust secretion of CpaA and CpaB, indicating that the transmembrane domain is dispensable for CpaA secretion and likely functions to retain CpaB inside the cell. Limited proteolysis of spheroplasts revealed that the C-terminal domain of CpaB is exposed to the periplasm, suggesting that this is the site where CpaA and CpaB interact in vivo Last, we show that CpaB does not abolish the proteolytic activity of CpaA against human Factor V. We conclude that CpaA is, to the best of our knowledge, the first characterized, bona fide virulence factor secreted by Acinetobacter species.


Assuntos
Acinetobacter/patogenicidade , Chaperonas Moleculares/metabolismo , Peptídeo Hidrolases/metabolismo , Acinetobacter/enzimologia , Acinetobacter/metabolismo , Animais , Fator V/metabolismo , Larva/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteólise , Baço/microbiologia , Virulência
19.
ACS Infect Dis ; 3(10): 744-755, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28850209

RESUMO

Hydrogen sulfide (H2S) is thought to protect bacteria from oxidative stress, but a comprehensive understanding of its function in bacteria is largely unexplored. In this study, we show that the human pathogen Staphylococcus aureus (S. aureus) harbors significant effector molecules of H2S signaling, reactive sulfur species (RSS), as low molecular weight persulfides of bacillithiol, coenzyme A, and cysteine, and significant inorganic polysulfide species. We find that proteome S-sulfhydration, a post-translational modification (PTM) in H2S signaling, is widespread in S. aureus. RSS levels modulate the expression of secreted virulence factors and the cytotoxicity of the secretome, consistent with an S-sulfhydration-dependent inhibition of DNA binding by MgrA, a global virulence regulator. Two previously uncharacterized thioredoxin-like proteins, denoted TrxP and TrxQ, are S-sulfhydrated in sulfide-stressed cells and are capable of reducing protein hydrodisulfides, suggesting that this PTM is potentially regulatory in S. aureus. In conclusion, our results reveal that S. aureus harbors a pool of proteome- and metabolite-derived RSS capable of impacting protein activities and gene regulation and that H2S signaling can be sensed by global regulators to affect the expression of virulence factors.


Assuntos
Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Enxofre/química , Enxofre/farmacologia , Proteoma , Virulência
20.
mSphere ; 2(3)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28656172

RESUMO

Staphylococcus aureus is a commensal human pathogen and a major cause of nosocomial infections. As gaseous signaling molecules, endogenous hydrogen sulfide (H2S) and nitric oxide (NO·) protect S. aureus from antibiotic stress synergistically, which we propose involves the intermediacy of nitroxyl (HNO). Here, we examine the effect of exogenous sulfide and HNO on the transcriptome and the formation of low-molecular-weight (LMW) thiol persulfides of bacillithiol, cysteine, and coenzyme A as representative of reactive sulfur species (RSS) in wild-type and ΔcstR strains of S. aureus. CstR is a per- and polysulfide sensor that controls the expression of a sulfide oxidation and detoxification system. As anticipated, exogenous sulfide induces the cst operon but also indirectly represses much of the CymR regulon which controls cysteine metabolism. A zinc limitation response is also observed, linking sulfide homeostasis to zinc bioavailability. Cellular RSS levels impact the expression of a number of virulence factors, including the exotoxins, particularly apparent in the ΔcstR strain. HNO, like sulfide, induces the cst operon as well as other genes regulated by exogenous sulfide, a finding that is traced to a direct reaction of CstR with HNO and to an endogenous perturbation in cellular RSS, possibly originating from disassembly of Fe-S clusters. More broadly, HNO induces a transcriptomic response to Fe overload, Cu toxicity, and reactive oxygen species and reactive nitrogen species and shares similarity with the sigB regulon. This work reveals an H2S/NO· interplay in S. aureus that impacts transition metal homeostasis and virulence gene expression. IMPORTANCE Hydrogen sulfide (H2S) is a toxic molecule and a recently described gasotransmitter in vertebrates whose function in bacteria is not well understood. In this work, we describe the transcriptomic response of the major human pathogen Staphylococcus aureus to quantified changes in levels of cellular organic reactive sulfur species, which are effector molecules involved in H2S signaling. We show that nitroxyl (HNO), a recently described signaling intermediate proposed to originate from the interplay of H2S and nitric oxide, also induces changes in cellular sulfur speciation and transition metal homeostasis, thus linking sulfide homeostasis to an adaptive response to antimicrobial reactive nitrogen species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...